Original Research

Contralateral Constrictor Dose Predicts Swallowing Function After Radiation for Head and Neck Cancer

Author and Disclosure Information

 

References

Discussion

This is the first study to link contralateral constrictor dose to long-term dysphagia in patients treated with radiation for H&N cancer. Editing the boost volume off air cavities was associated with lower contralateral constrictor V60 and with less long-term dysphagia. This may indicate that optimizing plans to meet a contralateral constrictor constraint can reduce rates of long-term dysphagia.

The most useful clinical predictors are those that identify a patient at low risk for toxicity. These constraints are useful because they reassure physicians that treatments will have a favorable risk/benefit ratio while identifying plans that may need modification before starting treatment.

The contralateral constrictor outperformed the uninvolved pharynx in identifying patients at low risk for long-term dysphagia. This difference could not be overcome by decreasing the threshold of the pharynx constraint, as 17% of patients with dysphagia had a mean dose of < 40 Gy to the uninvolved pharynx, which was not statistically significant.

An advantage of contralateral constrictor is that it is independent of planning target volume (PTV) size. The uninvolved pharynx structure depends on the PTV contour, so it may obscure a connection between PTV size and dysphagia.

In the context of a clinical trial, only measuring dose to the uninvolved pharynx may allow more plans to meet constraints, but even in NRG trials, physicians have some control over target volumes. For example, NRG HN009, a national trial for patients with H&N cancer, recommends editing the CTV_7000 (clinical target volume treated to 70 Gy) off air cavities but does not define how much the volume should be cropped or specify protocol violations if the volume is not cropped.15 Furthermore, constraints used in clinical trials are often adopted for use outside the trial, where physicians have extensive control over target volumes.

The broad range of uninvolved pharynx volume relative to total constrictor volume confounds predictions using this variable. For example, according to the NRG constraint, a patient with an uninvolved pharynx mean dose of 44 Gy will have a low risk of dysphagia even if this structure is only 1% of the total constrictor. The contralateral constrictor is always about 50% of the total constrictor volume, which means that predictions using this structure will not be confounded by the same variation in volume size.

Figure 2 shows a representative patient who met the NRG uninvolved pharynx constraint but developed long-term dysphagia.

This patient had an uninvolved pharynx mean dose of only 33 Gy, but this volume was only 31% of his total constrictor volume. This plan shows that on axial slices containing the GTV, nearly the entire constrictor was within the PTV and received at least 60 Gy. These areas of overlap and the dose they receive are not included in the uninvolved pharynx volume. The contralateral constrictor V60 for this patient was 52%, so the patient would have been in the high-risk group for dysphagia based on this structure’s constraint.

Pages

Recommended Reading

The Use of Aromatherapy as a Complementary Alternative Medicine in the Management of Cancer-Related Pain
AVAHO
NP-Led Suspicion of Cancer Clinic Improves Timeliness of Care for Veterans
AVAHO
Implementation of a Bone Marrow Biopsy Clinic: Effect on Wait Times for the Procedure, Diagnosis and Treatment Initiation
AVAHO
VA Launches Virtual Tumor Board
AVAHO
Novel blood test for early-stage liver cancer shows promise
AVAHO
AI tool may improve prediction of colorectal cancer recurrence
AVAHO
In VA Oncology, Discussion Groups Are Transforming the Workplace
AVAHO
VA Center Dramatically Shrinks Wait Times for Bone Marrow Biopsies
AVAHO
Pain in Cancer Survivors: Assess, Monitor, and Ask for Help
AVAHO
Consider radiologic imaging for high-risk cutaneous SCC, expert advises
AVAHO