Conference Coverage

New chimeric CD19 antibody may reduce MRD in ALL


 

Ursula Seidel

NEW YORK—Researchers have developed a pharmaceutical-grade, third-generation, CD19-specific antibody that reduced minimal residual disease (MRD) in pediatric patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL).

This chimerized, Fc-optimized antibody—4G7SDIE—was used on a compassionate-need basis in 14 patients with relapsed or refractory BCP-ALL. Nine of the patients had prior stem cell transplants.

Ursula JE Seidel, a PhD candidate at University Children’s Hospital Tubingen in Germany, discussed early results with the new antibody (poster B144) during the inaugural CRI-CIMT-EATI-AACR International Cancer Immunotherapy Conference.

Patients received 4G7SDIE infusions ranging from 5 mg/m2 to 50 mg/m2 twice a week for a year or longer.

They rarely experienced fever, nausea, or headache, according to the investigators, and all had B-cell depletion.

“The good thing about this antibody is it has a very low toxicity profile,” Seidel noted.

Upon discontinuation of therapy, B-cell counts recovered rapidly to normal levels.

The researchers followed the patients for a median of 543 days after transplant (range, 208–1137) and a median of 720 days after administration of 4G7SDIE (range, 264–1115).

Nine of the 14 patients had a reduction in MRD by 1 log or more, 2 of whom were receiving additional therapy with tyrosine kinase inhibitors.

Five patients had a reduction in MRD below the quantifiable level, and 2 patients became MRD-negative.

Six patients relapsed, and 5 of them died from relapsed disease. Two patients died of sepsis or chemotoxicity while in complete molecular remission. And 6 patients remain in complete molecular remission.

Functional characterization of 4G7SDIE

Through analysis of cells from healthy volunteers and BCP-ALL blasts of untreated and treated patients, the researchers determined that 4G7SDIE mediates enhanced antibody‑dependent cellular cytotoxicity through its improved capability to recruit FcγRIIIa-bearing effector cells.

They identified natural killer cells and γδ T cells as the main effector cells. And they determined that the FcγRIIIa-V158F polymorphism did not influence the effect of 4G7SDIE-mediated antibody‑dependent cellular cytotoxicity.

The researchers believe that the promising anti-leukemic effects of 4G7SDIE both in vitro and in vivo call for additional exploration. They are currently planning a phase 1/2 study to further assess the therapeutic activity of 4G7SDIE.

Recommended Reading

CHMP endorses expanded indication for azacitidine
MDedge Hematology and Oncology
CHMP recommends blinatumomab for ALL
MDedge Hematology and Oncology
NICE backs discounted idelalisib for CLL
MDedge Hematology and Oncology
Childhood cancer increases material hardship
MDedge Hematology and Oncology
Reducing side effects of CAR T-cell therapy
MDedge Hematology and Oncology
Problems in pediatric cancer care in Europe
MDedge Hematology and Oncology
Nonviral gene transfer of CARs tested in humans
MDedge Hematology and Oncology
Pregnant cancer patients: Start treatment ASAP
MDedge Hematology and Oncology
Variations in blood cancer survival across Europe
MDedge Hematology and Oncology
Abs from transplanted AML patients enhance GvL effect in vitro
MDedge Hematology and Oncology