Article

Pomalidomide in lenalidomide-refractory multiple myeloma and carfilzomib in refractory and newly diagnosed multiple myeloma

Pomalidomide and carfilzomib represent active and well-tolerated new options in combination regimens.

View on the News

From the Oncologist's Perspective - Evolving therapies for multiple myeloma

Noopur Raje, MD, Massachusetts General Hospital Cancer Center; Division of Hematology and Oncology, Massachusetts General Hospital; and Harvard Medical School, Boston, MA

Although multiple myeloma (MM) remains an incurable bone marrow

cancer, survival rates have improved markedly over the past decade. An

understanding of MM pathobiology (Figure 1) and improvement in stem cell

transplantation, better supportive care, and novel therapies with

higher efficacy and lower toxicity are all responsible for this

improvement. The availability of a rich pipeline of novel agents

undergoing early-phase clinical trials in MM is an exciting and active

area of research.1

Current treatment

Over the past several years, five therapeutic strategies have

received US Food and Drug Administration (FDA) approval either as

monotherapy or in combination for treating MM, with thalidomide

(Thalomid), lenalidomide (Revlimid), and bortezomib (Velcade) as

important backbone drugs in these approaches. In the upfront setting,

thalidomide with dexamethasone2 and bortezomib in combination with melphalan and prednisone3

increased the overall response rate and significantly prolonged time to

disease progression and are FDA approved. For treatment of relapsed MM,

bortezomib alone4 and in combination with pegylated liposomal doxorubicin (Doxil),5 as well as lenalidomide/dexamethasone,6

have been approved. Results of a recent phase III randomized clinical

trial suggest that lower doses of dexamethasone provide a survival

advantage, at least in the upfront setting, mainly due to the increased

toxicity of high doses of dexamethasone.7

The availability of these novel agents has not only provided us

with several treatment options but has had an important impact on the

overall survival of our patients. To improve upon current outcomes,

optimal combinations of bortezomib, thalidomide, and lenalidomide are

currently under evaluation in phase II/III clinical trials.

Novel approaches

The preceding review refers to recent data on pomalidomide, the

newest immunomodulatory drug (IMiD) analog, which has shown single-agent

activity in phase I studies and was subsequently tested in a phase II

trial in combination with low-dose dexamethasone in patients with

relapsed or refractory MM. Pomalidomide/dexamethasone was found to be

highly active and well tolerated, providing a clinical benefit in 47% of

patients and no grade 3 neuropathy. These findings have led to a large

phase II study, which has completed accrual and is awaiting analysis.

Another promising agent discussed here is the novel proteasome

inhibitor carfilzomib. Although bortezomib is an effective agent in MM,

about 20% of newly diagnosed patients are resistant to bortezomib, and,

ultimately, all patients relapse and develop resistance to the drug.

Carfilzomib irreversibly blocks chymotrypsin-like activity and in phase I

studies achieved more than 80% proteasome inhibition. Encouraging data

presented at the 2010 annual meeting of the American Society of

Hematology demonstrated that it was well tolerated and had an overall

clinical benefit rate of 36% in relapsed/refractory MM.8 In the upfront setting, carfilzomib combined with lenalidomide led to a 100% response rate.9

This combination with low-dose dexamethasone is currently

undergoing testing in a phase III registration trial. These data,

therefore, provide important therapeutic options among the armamentarium

of current and future antimyeloma therapies, helping transform MM into

an even more chronic disease than it is today and ultimately leading to a

cure.

References

1. Cirstea D, Vallet S, Raje N. Future novel single agent and combination therapies. Cancer J 2009;15:511-518.

2. Rajkumar

SV, Rosinol L, Hussein M, et al. Multicenter, randomized, double-blind,

placebo-controlled study of thalidomide plus dexamethasone compared

with dexamethasone as initial therapy for newly diagnosed multiple

myeloma. J Clin Oncol 2008;26:2171-2177.

3. San

Miguel JF, Schlag R, Khuageva NK, et al. Bortezomib plus melphalan and

prednisone for initial treatment of multiple myeloma. N Engl J Med

2008;359:906-917.

4. Richardson

PG, Sonneveld P, Schuster MW, et al. Bortezomib or high-dose

dexamethasone for relapsed multiple myeloma. N Engl J Med

2005;352:2487-2498.

5. Orlowski

RZ, Nagler A, Sonneveld P, et al. Randomized phase III study of

pegylated liposomal doxorubicin plus bortezomib compared with bortezomib

alone in relapsed or refractory multiple myeloma: combination therapy

improves time to progression. J Clin Oncol 2007;25:3892-3901.

6. Dimopoulos

MA, Chen C, Spencer A, et al. Long-term follow-up on overall survival

from the MM-009 and MM-010 phase III trials of lenalidomide plus

dexamethasone in patients with relapsed or refractory multiple myeloma.

Leukemia 2009;23:2147-2152.

7. Rajkumar

SV, Jacobus S, Callander NS, et al. Lenalidomide plus high-dose

dexamethasone versus lenalidomide plus low-dose dexamethasone as initial

therapy for newly diagnosed multiple myeloma: an open-label randomised

controlled trial. Lancet Oncol 2010;11:29-37.

8. Siegel

DSD, Martin T, Wang M, et al. Results of PX-171-003-A1, an open-label,

single-arm, phase 2 study of carfilzomib (CFZ) in patients (pts) with

relapsed and refractory multiple myeloma (MM). Blood 2010;116:985.

9. Jakubowiak

AJ, Dytfeld D, Jagannath S, et al. Carfilzomib, lenalidomide, and

dexamethasone in newly diagnosed multiple myeloma: initial results of

phase I/II MMRC trial. Blood 2010;116:862.

Dr. Raje can be reached at nraje@partners.org.


 

What's new, what's important
Treatment of multiple myeloma is evolving rapidly. It is tough to keep up with the rapid pace of new drugs, updates, and changes in the standard of care. In this issue of Community Oncology we bring to you two new exciting drugs on the horizon, pomalidomide and carfilzomib. In addition to introducing these two new drugs, we have asked Dr. Noopur Raje to explain how she treats a newly diagnosed patient with multiple myeloma.
Pomalidomide, a thalidomide (Thalomid) analog, is a promising myeloma drug with encouraging responses in relapsed/refractory myeloma patients. Carfilzomib is a novel proteasome inhibitor. When combined with lenalidomide (Revlimid) in the first-line setting, it produced a 100% response rate. Phase III studies are in progress or being completed. It will be exciting to see the final results of these studies.
With this issue we are changing the format of Community Translations to incorporate the mechanism of action or pathophysiology of some of these new advances so that a clinician can relate to them in a clinical setting.

--Jame Abraham, MD, Editor

Two of the most promising drugs on the horizon for patients with multiple myeloma (MM) are pomalidomide and carfilzomib. Both agents have shown significant single-agent activity in clinical trials. They seem to work in patients whose MM is resistant to other treatments and are being studied in combination regimens.
Pomalidomide
Pomalidomide is a new immunomodulatory drug (IMiD) with high in vitro potency. In initial experience with pomalidomide and low-dose dexamethasone in relapsed MM, Lacy and colleagues found an overall response rate of 63% and observed responses in some patients who were refractory to lenalidomide (Revlimid), suggesting an absence of cross-resistance between pomalidomide and other IMiDs. In a recently reported phase II study,1 these investigators assessed the combination of pomalidomide and low-dose dexamethasone in patients with lenalidomide-refractory MM, finding the combination to be highly active and well tolerated.
In this study, 34 patients with lenalidomide-refractory MM were treated with oral pomalidomide (2 mg daily) and dexamethasone (40 mg once weekly) in 28-day cycles. Patients had a median age of 61.5 years, 68% were male, 85% had an ECOG (Eastern Cooperative Oncology Group) performance status of 0 or 1, and 41% were categorized as high risk. The median time from diagnosis was 62 months. The median number of prior chemotherapy regimens was four. In addition to lenalidomide, 58% of patients had received prior thalidomide (Thalomid), and 59% had received prior bortezomib (Velcade); 68% of patients had undergone prior autologous stem cell transplantation, and 53% had prior radiation therapy. Twenty patients (59%) had peripheral neuropathy at baseline.
Patients received a median of 5 cycles (range, 1−14) of pomalidomide plus low-dose dexamethasone. Prophylaxis for venous thromboembolism was given in 204 of 209 treatment cycles (aspirin in 150 cycles and warfarin in 54 cycles). Treatment responses consisted of a very good partial response in 9%, a partial response in 23%, and a minimal response in 15%, for an overall clinical benefit rate of 47%; 35% of patients had stable disease, and 18% had disease progression. The median time to response was 2 months. Response was observed in 8 of 14 (57%) high-risk patients, in 8 of 19 (42%) who received previous thalidomide treatment, and in 9 of 20 (45%) who were given previous bortezomib treatment. In eight patients with stable disease, the pomalidomide dose was increased to 4 mg/d, with one patient improving to a partial response. The median duration of response in 11 patients with a partial response or better was 9.1 months. The median progression-free survival was 4.8 months, and progression-free survival did not differ between high-risk and standard-risk patients. The median overall survival was 13.9 months. During follow-up, treatment was stopped due to disease progression in 23 patients, 3 withdrew from the study due to patient/physician discretion, and 8 continued to receive treatment. Seven patients died, all due to disease progression. The median follow-up of patients remaining alive was 8.3 months.
Pomalidomide/dexamethasone treatment was well tolerated. Toxicity consisted mostly of myelosuppression. Grade 3 or 4 hematologic toxicity at least possibly related to treatment occurred in 38% of patients, including neutropenia in 29%, anemia in 12%, and thrombocytopenia in 9%. The most common grade 3/4 nonhematologic toxicity was fatigue, which occurred in 9% of patients (all grade 3); grade 3 pneumonitis, edema, pneumonia, and folliculitis were each observed in one patient. Nine patients (26%) had neuropathy during treatment (six grade 1, three grade 2); they included six patients with neuropathy at baseline, three of whom had a worsening of grade.

Pages

Recommended Reading

Rituximab Maintenance Approved in Follicular Lymphoma
MDedge Hematology and Oncology
Rituximab Maintenance Approved in Follicular Lymphoma
MDedge Hematology and Oncology
Plastic Surgery Groups Remove Cancer-Implant Webinar After Complaints
MDedge Hematology and Oncology
NCCN Upgrades Rituximab Regimens for Follicular Lymphoma
MDedge Hematology and Oncology
Results of a Multicenter Open-Label Randomized Trial Evaluating Infusion Duration of Zoledronic Acid in Multiple Myeloma Patients (the ZMAX Trial)
MDedge Hematology and Oncology
Brentuximab and Refractory Hodgkin's Lymphoma
MDedge Hematology and Oncology
Rituximab Maintenance Approved in Follicular Lymphoma
MDedge Hematology and Oncology
FDA warns of possible link between breast implants and ALCL
MDedge Hematology and Oncology
ODAC votes against one leukemia, one NHL drug
MDedge Hematology and Oncology
Denileukin diftitox has significant, durable responses in CTCL
MDedge Hematology and Oncology