From the Journals

New genotype of S. pyrogenes found in rise of scarlet fever in U.K.


 

FROM THE LANCET INFECTIOUS DISEASES

A new Streptococcus pyogenes genotype (designated M1UK) emerged in 2014 in England causing an increase in scarlet fever “unprecedented in modern times.” Researchers discovered that this new genotype became dominant during this increased period of scarlet fever. This new genotype was characterized by an increased production of streptococcal pyrogenic exotoxin A (SpeA, also known as scarlet fever or erythrogenic toxin A) compared to previous isolates, according to a report in The Lancet Infectious Diseases.

Streptococcus pyogenes (cause of scarlet fever and puerperal fever) CDC

Streptococcus pyogenes

The expanded reservoir of M1UK and the recognized invasive potential of this new form of S. pyogenes provide a plausible explanation for the increased incidence of invasive disease and rationale for global surveillance, according to the online report by Nicola N. Lynskey, PhD, and colleagues.

The researchers analyzed changes in S. pyogenes emm1 genotypes sampled from scarlet fever and invasive disease cases in 2014-2016. The emm1 gene encodes the cell surface M virulence protein and is used for serotyping S. pyogenes isolates. Using regional (northwest London) and national (England and Wales) data, they compared genomes of 135 noninvasive and 552 invasive emm1 isolates from 2009-2016 with 2,800 global emm1 sequences.

During the increase in scarlet fever and invasive disease, emm1 S. pyogenes upper respiratory tract isolates increased significantly in northwest London during the March to May periods over 3 years from 5% of isolates in 2014 to 19% isolates in 2015 to 33% isolates in 2016. Similarly, invasive emm1 isolates collected nationally in the same period increased from 31% of isolates in 2015 to 42% in 2016 (P less than .0001). Sequences of emm1 isolates from 2009-2016 showed emergence of a new emm1 lineage (designated M1UK), which could be genotypically distinguished from pandemic emm1 isolates (M1global) by 27 single-nucleotide polymorphisms. In addition, the median SpeA protein concentration was 9 times greater among M1UK isolates than among M1global isolates. By 2016, M1UK expanded nationally to comprise 84% of all emm1 genomes tested. Dataset analysis also identified single M1UK isolates present in Denmark and the United States.

“The expansion of such a lineage within the community reservoir of S. pyogenes might be sufficient to explain England’s recent increase in invasive infection. Further research to assess the likely effects of M1UK on infection transmissibility, treatment response, disease burden, and severity is required, coupled with consideration of public health interventions to limit transmission where appropriate,” Dr. Lynskey and colleagues concluded.

The authors reported that they had no disclosures.

SOURCE: Linskey NN et al. Lancet Infect Dis. 2019. doi: 10.1016/S1473-3099(19)30446-3.

Recommended Reading

Delaying antibiotics in elderly with UTI linked to higher sepsis, death rates
MDedge Internal Medicine
Fournier gangrene cases surge in patients using SGLT2 inhibitors
MDedge Internal Medicine
Is it measles? – Diagnosis and management for the pediatric provider
MDedge Internal Medicine
CDC creates interactive education module to improve RMSF recognition
MDedge Internal Medicine
Ebola outbreak: WHO/OCHA call for more aid, better security
MDedge Internal Medicine
DRC Ebola epidemic continues unabated despite international response
MDedge Internal Medicine
Favorable Ebola results lead to drug trial termination, new focus
MDedge Internal Medicine
Possible role of enterovirus infection in acute flaccid myelitis cases detected
MDedge Internal Medicine
Impact of climate change on mortality underlined by global study
MDedge Internal Medicine
Post-Ebola mortality five times higher than general population
MDedge Internal Medicine