From the Journals

Scientists use 3D printing to create injection-free vaccine patch


 

Most vaccines are given with hypodermic needle injections. But shots aren’t necessarily the most efficient or effective way to deliver a vaccine. Scientists have been experimenting with microneedle patches to painlessly deliver a vaccine into the outermost layer of the skin with dozens of extremely tiny needles coated in the vaccine solution.

Now, researchers have found a three-dimensional printing method that lets them customize microneedle shapes in the patches for different pathogens, such as flu, measles, hepatitis, or COVID-19. In tests using mice, the patches led to stronger and longer-lasting immune responses than traditional shots under the skin. The research team described their findings in the Proceedings of the National Academy of Sciences.

Tiny needles, big advantages

Previous research has shown delivering vaccines into the skin can cause a stronger immune response because the skin has a high concentration of immune cells. But shots can be painful and require skilled medical providers.

Microneedles painlessly deliver the vaccine into the skin without the need for a trained clinician. In fact, a person can even give the vaccine to themselves.

The needles – made of metal, silicon, or plastic – are so tiny that they puncture only the tough outermost layer of skin. The prospect of a painless vaccination without a hypodermic needle may ease anxiety in people who fear needles.

Scientists also can store dried patches after coating them with the vaccine solution, so there’s no preparation needed before giving the vaccine and the patches may not even require cold storage. This latest study suggests that the patches generate a stronger immune response than standard shots, allowing for a smaller dose than traditional vaccine delivery methods and possibly fewer side effects.

Breaking the mold

Past methods of making microneedle patches often used molds, but that approach limited the ability to customize patches for different diseases. Repeatedly using same mold also can blunt the tiny needles.

For the three-dimensional–printed patches, Cassie Caudill at the University of North Carolina at Chapel Hill and colleagues used a printing technique that allows greater control over and consistency in the shape of the microneedles. The investigators printed two shapes: a slender pyramid microneedle that is similar to previous versions, and one with serrated grooves that resembles a pine tree.

The increased surface area from the grooves let researchers add 36% more of the ingredient that causes an immune response, compared with using only the pyramid shape, yet still less than a conventional shot. At only 1 cm by 1 cm, each patch contains 100 microneedles that are just over 1 mm long. The researchers found that in mice the patch drew a stronger immune response than a conventional shot, despite carrying a much smaller dose of vaccine ingredient.

A version of this article first appeared on WebMD.com.

Recommended Reading

Lupus may confer higher risk of death from COVID-19
MDedge Internal Medicine
Omega-3s tame inflammation in elderly COVID-19 patients
MDedge Internal Medicine
What turns wandering thoughts into something worse?
MDedge Internal Medicine
No short-term death risk in elderly after COVID-19 vaccines
MDedge Internal Medicine
CDC: Children just as vulnerable to COVID as adults
MDedge Internal Medicine
Even one vaccinated member can cut family’s COVID risk
MDedge Internal Medicine
‘Fascinating’ link between Alzheimer’s and COVID-19
MDedge Internal Medicine
New safety data regarding COVID vaccines
MDedge Internal Medicine
Many scientists face serious threats for speaking about COVID: Survey
MDedge Internal Medicine
D-dimer unreliable for ruling out pulmonary embolism in COVID-19
MDedge Internal Medicine