Reports From the Field

Improving Hospital Metrics Through the Implementation of a Comorbidity Capture Tool and Other Quality Initiatives


 

References

From the University of Miami Miller School of Medicine (Drs. Sosa, Ferreira, Gershengorn, Soto, Parekh, and Suarez), and the Quality Department of the University of Miami Hospital and Clinics (Estin Kelly, Ameena Shrestha, Julianne Burgos, and Sandeep Devabhaktuni), Miami, FL.

Abstract

Background: Case mix index (CMI) and expected mortality are determined based on comorbidities. Improving documentation and coding can impact performance indicators. During and prior to 2018, our patient acuity was under-represented, with low expected mortality and CMI. Those metrics motivated our quality team to develop the quality initiatives reported here.

Objectives: We sought to assess the impact of quality initiatives on number of comorbidities, diagnoses, CMI, and expected mortality at the University of Miami Health System.

Design: We conducted an observational study of a series of quality initiatives: (1) education of clinical documentation specialists (CDS) to capture comorbidities (10/2019); (2) facilitating the process for physician query response (2/2020); (3) implementation of computer logic to capture electrolyte disturbances and renal dysfunction (8/2020); (4) development of a tool to capture Elixhauser comorbidities (11/2020); and (5) provider education and electronic health record reviews by the quality team.

Setting and participants: All admissions during 2019 and 2020 at University of Miami Health System. The health system includes 2 academic inpatient facilities, a 560-bed tertiary hospital, and a 40-bed cancer facility. Our hospital is 1 of the 11 PPS-Exempt Cancer Hospitals and is the South Florida’s only NCI-Designated Cancer Center.

Measures: Number of coded diagnoses and Elixhauser comorbidities; CMI and expected mortality were compared between the pre-intervention and the intervention periods using t-tests and Chi-square test.

Results: There were 33 066 admissions during the study period—13 689 before the intervention and 19 377 during the intervention period. From pre-intervention to intervention, the mean (SD) number of comorbidities increased from 2.5 (1.7) to 3.1 (2.0) (P < .0001), diagnoses increased from 11.3 (7.3) to 18.5 (10.4) (P < .0001), CMI increased from 2.1 (1.9) to 2.4 (2.2) (P < .0001), and expected mortality increased from 1.8% (6.1) to 3.1% (9.2) (P < .0001).

Conclusion: The number of comorbidities, diagnoses, and CMI all improved, and expected mortality increased in the year of implementation of the quality initiatives.

Keywords: PS/QI, coding, case mix index, comorbidities, mortality.

Accurate documentation of the patient’s clinical course during hospitalization is essential for patient care. To date, Diagnosis Related Groups (DRG) remain the standard for calculating health care system–level risk-adjusted outcomes data and are essential for institutional reputation (eg, US News & World Report rankings).1,2 With an ever-increasing emphasis on pay-for-performance and value-based purchasing within the US health care system, there is a pressing need for institutions to accurately capture the complexity and acuity of the patients they care for.

Adoption of comprehensive electronic health record (EHR) systems by US hospitals, defined as an EHR capable of meeting all core meaningful-use metrics including evaluation and tracking of quality metrics, has been steadily increasing.3,4 Many institutions have looked to EHR system transitions as an inflection point to expand clinical documentation improvement (CDI) efforts. Over the past several years, our institution, an academic medical center, has endeavored to fully transition to a comprehensive EHR system (Epic from Epic Systems Corporation). Part of the purpose of this transition was to help study and improve outcomes, reduce readmissions, improve quality of care, and meet performance indicators.

Prior to 2019, our hospital’s patient acuity was low, with a CMI consistently below 2, ranging from 1.81 to 1.99, and an expected mortality consistently below 1.9%, ranging from 1.65% to 1.85%. Our concern that these values underestimated the real severity of illness of our patient population prompted the development of a quality improvement plan. In this report, we describe the processes we undertook to improve documentation and coding of comorbid illness, and report on the impact of these initiatives on performance indicators. We hypothesized that our initiatives would have a significant impact on our ability to capture patient complexity, and thus impact our CMI and expected mortality.

Pages

Recommended Reading

Comparison of Fractional Flow Reserve–Guided PCI and Coronary Bypass Surgery in 3-Vessel Disease
Journal of Clinical Outcomes Management
Intervention in Acute Hospital Unit Reduces Delirium Incidence for Older Adults, Has No Effect on Length of Stay, Other Complications
Journal of Clinical Outcomes Management
Structural Ableism: Defining Standards of Care Amid Crisis and Inequity
Journal of Clinical Outcomes Management
Role and Experience of a Subintensive Care Unit in Caring for Patients With COVID-19 in Italy: The CO-RESP Study
Journal of Clinical Outcomes Management
Differences in COVID-19 Outcomes Among Patients With Type 1 Diabetes: First vs Later Surges
Journal of Clinical Outcomes Management
Early Hospital Discharge Following PCI for Patients With STEMI
Journal of Clinical Outcomes Management
Using a Real-Time Prediction Algorithm to Improve Sleep in the Hospital
Journal of Clinical Outcomes Management
Oxygen Therapies and Clinical Outcomes for Patients Hospitalized With COVID-19: First Surge vs Second Surge
Journal of Clinical Outcomes Management
Acute STEMI During the COVID-19 Pandemic at a Regional Hospital: Incidence, Clinical Characteristics, and Outcomes
Journal of Clinical Outcomes Management
A Practical and Cost-Effective Approach to the Diagnosis of Heparin-Induced Thrombocytopenia: A Single-Center Quality Improvement Study
Journal of Clinical Outcomes Management