Reports From the Field

The Hospitalist Triage Role for Reducing Admission Delays: Impacts on Throughput, Quality, Interprofessional Practice, and Clinician Experience of Care


 

References

Methods

Setting

The University of New Mexico Hospital has 537 beds and is the only level-1 trauma and academic medical center in the state. On average, approximately 8000 patients register to be seen in the ED per month. Roughly 600 are admitted to IM per month. This study coincided with the COVID-19 pandemic, with low patient volumes in April 2020, overcapacity census starting in May 2020, and markedly high patient volumes in May/June 2020 and November/December 2020. All authors participated in project development, implementation, and analysis.

Preintervention IM Admission Process

When requesting IM admission, ED clinicians (resident, advanced practice provider [APP], or attending) contacted the IM triage person (typically an IM resident physician) by phone or in person. The IM triage person would then assess whether the patient needed critical care consultation (a unique and separate admission pathway), was eligible for ED observation or transfer to an outside hospital, or was clinically appropriate for IM subacute and floor admission. Pending admissions were evaluated in order of severity of illness or based on wait time if severity of illness was equal. Transfers from the intensive care unit (ICU) and referring hospitals were prioritized. Between 7:00 AM and 7:00 PM, patients were typically evaluated by junior team members, with subsequent presentation to an attending, at which time a final admission decision was made. At night, between 7:00 PM and 7:00 AM, 2 IM residents managed triage, admissions, and transfers with an on-call attending physician.

Triage Hospitalist Pilot

Key changes made during the pilot included scheduling an IM attending to serve as triage hospitalist for all IM admission requests from the ED between 7:00 AM and 7:00 PM; requiring that all IM admission requests be initiated by the ED attending and directed to the triage hospitalist; requiring ED attendings to enter into the electronic medical record (EMR) an admission request order (subsequently referred to as ED admission request [EDAR] order); and encouraging bedside handoffs. Eight pilot shifts were completed in November and December 2019.

Measures for Triage Hospitalist Pilot

Data collected included request type (new vs overflow from night) and patient details (name, medical record number). Two time points were recorded: when the EDAR order was entered and when admission orders were entered. Process indicators, including whether the EDAR order was entered and the final triage decision (eg, discharge, IM), were recorded. General feedback was requested at the end of each shift.

Phased Implementation of Triage Hospitalist Role

Triage hospitalist role implementation was approved following the pilot, with additional salary support funded by the institution. A new performance measure (time from admission request to admission order, self-identified goal < 3 hours) was approved by all parties.

In January 2020, the role was scheduled from 7:00 AM to 7:00 PM daily. All hospitalists participated. Based on pilot feedback, IM admission requests could be initiated by an ED attending or an ED APP. In addition to admissions from the ED, the triage hospitalist was tasked with managing ICU, subspecialty, and referring facility transfer requests, as well as staffing some admissions with residents.

In March 2020, to create a single communication pathway while simultaneously hardwiring our measurement strategy, the EDAR order was modified such that it would automatically prompt a 1-way communication to the triage hospitalist using the institution’s secure messaging software. The message included patient name, medical record number, location, ED attending, reason for admission, and consultation priority, as well as 2 questions prompting ED clinicians to reflect on the most common reasons for the triage hospitalist to recommend against IM admission (eligible for admission to other primary service, transfer to alternative hospital).

In July 2020, the triage hospitalist role was scheduled 24 hours a day, 7 days a week, to meet an institutional request. The schedule was divided into a daytime 7:00 AM to 3:00 PM shift, a 3:00 PM to 7:00 PM shift covered by a resident ward team IM attending with additional cross-cover responsibility, and a 7:00 PM to 7:00 AM shift covered by a nocturnist.

Measures for Triage Hospitalist Role

The primary outcome measure was TTA, defined as the time between EDAR (operationalized using EDAR order timestamp) and IM admission decision (operationalized using inpatient bed request order timestamp). Additional outcome measures included the Centers for Medicare & Medicaid Services Electronic Clinical Quality Measure ED-2 (eCQM ED-2), defined as the median time from admit decision to departure from the ED for patients admitted to inpatient status.

Process measures included time between patient arrival to the ED (operationalized using ED registration timestamp) and EDAR and percentage of IM admissions with an EDAR order. Balancing measures included time between bed request order (referred to as the IM admission order) and subsequent admission orders. While the IM admission order prompts an inpatient clinical encounter and inpatient bed assignment, subsequent admission orders are necessary for clinical care. Additional balancing measures included ICU transfer rate within the first 24 hours, referring facility transfer frequency to IM (an indicator of access for patients at outside hospitals), average hospital medicine LOS (operationalized using ED registration timestamp to discharge timestamp), and admission status (inpatient vs observation).

An anonymous preintervention (December 2019) and postintervention (August 2020) survey focusing on interprofessional practice and clinician experience of care was used to obtain feedback from ED and IM attendings, APPs, and trainees. Emergency department clinicians were asked questions pertaining to their IM colleagues and vice versa. A Likert 5-point scale was used to respond.

Data Analysis

The preintervention period was June 1, 2019, to October 31, 2019; the pilot period was November 1, 2019, to December 31, 2019; the staged implementation period was January 1, 2020, to June 30, 2020; and the postintervention period was July 1, 2020, to December 31, 2020. Run charts for outcome, process, and balancing measures were interpreted using rules for deriving statistically significant conclusions.11 Statistical analysis using a t test assuming unequal variances with P < . 05 to indicate statistical significance was applied to experience-of-care results. The study was approved by the Institutional Review Board.

Pages

Recommended Reading

The Shifting Landscape of Thrombolytic Therapy for Acute Ischemic Stroke
Journal of Clinical Outcomes Management
JCOM: 30 Years of Advancing Quality Improvement and Innovation in Care Delivery
Journal of Clinical Outcomes Management
Leading for High Reliability During the COVID-19 Pandemic: A Pilot Quality Improvement Initiative to Identify Challenges Faced and Lessons Learned
Journal of Clinical Outcomes Management
Implementation of a Multidisciplinary Team–Based Clinical Care Pathway Is Associated With Increased Surgery Rates for Infective Endocarditis
Journal of Clinical Outcomes Management
Meet the JCOM Author with Dr. Barkoudah: Leading for High Reliability During the COVID-19 Pandemic
Journal of Clinical Outcomes Management
Meet the JCOM Author with Dr. Barkoudah: A Multidisciplinary Team–Based Clinical Care Pathway for Infective Endocarditis
Journal of Clinical Outcomes Management
Patient Safety in Transitions of Care: Addressing Discharge Communication Gaps and the Potential of the Teach-Back Method
Journal of Clinical Outcomes Management
Differences in 30-Day Readmission Rates in Older Adults With Dementia
Journal of Clinical Outcomes Management
Quality Improvement in Health Care: From Conceptual Frameworks and Definitions to Implementation
Journal of Clinical Outcomes Management
Redesign of Health Care Systems to Reduce Diagnostic Errors: Leveraging Human Experience and Artificial Intelligence
Journal of Clinical Outcomes Management