Master Class

Preterm birth: Under the microscope


 

Preventing infant mortality remains a significant challenge for ob.gyns. Despite the availability of a multitude of preventive and treatment options and some of the best possible medical care offered in the world, the United States lags behind many other developed and developing countries in its rate of infant deaths, which was an estimated 5.8 deaths per 1,000 live births in 2017. We can, and must, do better.

Dr. E. Albert Reece, vice president for medical affairs at the University of Maryland, Baltimore, and the John Z. and Akiko K. Bowers Distinguished Professor and dean of the school of medicine.

Dr. E. Albert Reece

One of the major contributing factors to infant mortality is preterm birth. Defined as birth occurring prior to 37 weeks’ gestation, preterm birth is associated with a myriad of severe neonatal sequelae: low birth weight, bacterial sepsis, neonatal hemorrhage, and respiratory distress syndrome, among others. Therefore, many within the clinical and biomedical research spheres recognize that preventing preterm birth means reducing infant deaths.

However, therein lies the conundrum. We know very little about what causes preterm birth, which renders the current therapeutic strategies – such as use of progesterone supplements or cerclage placement – good for some but not all patients. It is thus vital to continue research to unravel the underlying mechanisms of preterm birth.

A promising area of investigation is the field of microbiome research, which has made great strides in advancing our awareness of the critical role of the millions of organisms living on and within us in maintaining health and fighting disease. For example, we now realize that eradicating all the commensals in our gastrointestinal tract has unintended and very negative consequences and, for patients whose good bacteria have been eliminated, fecal transplant is a therapeutic option. Therefore, it stands to reason that the microbes found in the vagina contribute significantly to women’s overall reproductive health.

The publication of the groundbreaking study characterizing the vaginal microbiome species in reproductive-age women opened new avenues of research into how these organisms contribute to women’s health. Importantly, this work, led initially by Jacques Ravel, PhD, a professor in the department of microbiology & immunology and associate director of the Institute for Genome Sciences at the University of Maryland School of Medicine, has spawned additional investigations into the potential role of the vaginal microbiome in preterm birth.

To provide some insight into the research around how the microorganisms in the vagina may induce or prevent preterm birth is our guest author, Michal A. Elovitz, MD, the Hilarie L. Morgan and Mitchell L. Morgan President’s Distinguished Professor in Women’s Health, vice chair of translational research, and director of the Maternal and Child Health Research Center, department of obstetrics and gynecology, at the University of Pennsylvania, Philadelphia.

Dr. Reece, who specializes in maternal-fetal medicine, is executive vice president for medical affairs at the University of Maryland School of Medicine as well as the John Z. and Akiko K. Bowers Distinguished Professor and dean of the school of medicine. He is the medical editor of this column. He said he had no relevant financial disclosures. Contact him at obnews@mdedge.com.

Recommended Reading

Racial disparities persist in preterm birth risk
MDedge ObGyn
ObGyn malpractice liability risk: 2020 developments and probabilities
MDedge ObGyn
2020 Update on fertility
MDedge ObGyn
ERAS for cesarean delivery: Intraoperative care
MDedge ObGyn
Newborn transfer may not reflect true rate of complications
MDedge ObGyn
After gestational diabetes, longer lactation tied to lower risk for type 2
MDedge ObGyn
June Medical Services v. Russo: Understanding this high-stakes abortion case
MDedge ObGyn
Vitamin D supplements in pregnancy boost bone health in offspring
MDedge ObGyn
Genetic risk score may flag post-GDM incidence of type 2 disease
MDedge ObGyn
Macrolides early in pregnancy linked to greater malformation risk
MDedge ObGyn