Clinical Review

The Role of Medial Patellofemoral Ligament Repair and Imbrication

Author and Disclosure Information

Repair, reefing, and advancement of the medial patellofemoral ligament (MPFL) and medial retinacular structures can be performed as an isolated procedure or in conjunction with distal realignment procedures for patients with patellar instability. Although various operative techniques have been described, understanding the appropriate clinical indications and MPFL injury patterns ultimately determines the success or failure of the procedure. MPFL repair is best indicated in the acute setting, particularly if there is a patella- or femoral-based avulsion. If MPFL repair is being considered, and there is no evidence of avulsion on plain radiographs, magnetic resonance imaging can be used to examine the pattern and extent of the MPFL injury. In cases of chronic patellar instability, medial retinacular reefing or imbrication is best considered in conjunction with other procedures that address common pathology associated with chronic instability. These procedures include distal realignment, trochleoplasty, and distal femoral osteotomy.


 

References

Take-Home Points

  • MPFL repair has the best results with isolated ligament avulsions in first-time dislocations. This can be demonstrated on MRI and verified at the time of arthroscopy.
  • Recurrent dislocations, even if acute, have a higher failure rate with MPFL repair. In this setting, MPFL reconstruction provides more consistent outcomes.
  • In cases of chronic lateral patellar dislocation, imbrication may be enough when other associated procedures have sufficiently stabilized the patella without the need for a strong soft-tissue checkrein.
  • Femoral-sided repairs are more challenging due to the need to optimize the insertion point on the femur, as small changes in positioning can cause increased stress on the repaired tissue and lead to failure.
  • If a repair is to have a chance to work, it must be performed at the site of the tear. Thus, preoperative planning and intraoperative inspection is important to precisely identify the site, which can involve intrasubstance and multifocal injuries as well as the femoral and patellar complex attachments.

The medial patellofemoral ligament (MPFL) is the primary soft-tissue restraint to lateral patellar translation.1 In cases of first-time acute lateral patellar dislocation, injury to the MPFL is described as the essential lesion, occurring in almost 100% of cases.2-4 Because of the relatively high frequency of recurrent instability after first-time acute lateral patellar dislocation,5-7 much research has been focused on MPFL repair and reconstruction.8-11 Although the clinical results of isolated MPFL repair are highly variable, this variability is likely secondary to relatively inconsistent clinical indications for repair, with repair described for patients with acute as well as chronic or recurrent instability.10-13 From these early successes and failures, much has been learned about the appropriate indications for MPFL repair as well as medial retinacular “reefing” or imbrication in the chronic setting.

Relevant Anatomy

The MPFL is an extracapsular thickening of the medial retinacular structures and can be most consistently identified just distal to the vastus medialis obliquus, running within layer 2 of the medial side of the knee (using the often-referenced layer system popularized by Warren and Marshall14). The MPFL origin on the medial aspect of the femur falls within a well-defined saddle between the adductor tubercle and the medial epicondyle.15 From this relatively narrow origin, the MPFL broadens before attaching to the proximal one-third of the medial aspect of the patella.

Over the past 2 decades, the osseous anatomy surrounding the femoral origin of the MPFL has been of much interest in large part because of the increasing popularity of MPFL reconstruction. Although useful for MPFL reconstruction, the vast amount of literature and our improved understanding of this anatomical region can be extrapolated to MPFL repair. The radiographic landmarks described by Schöttle and colleagues16 have advanced our knowledge of the femoral origin of the MPFL, with fluoroscopic guidance allowing for more limited dissection and increased accuracy of repair for femoral-sided MPFL injuries.

Location of MPFL Injury

Understanding and appreciating the specific location of the MPFL injury are paramount to successful MPFL repair. Unfortunately, the location and pattern of MPFL injury cannot be consistently predicted. Although early surgical dissections described femoral-sided injuries as the most common injury site,4 more recent studies using magnetic resonance imaging (MRI) have described a more even distribution of MPFL injury patterns, which include patella-based ruptures, femoral-based ruptures, intrasubstance ruptures, and multifocal injuries.17 In addition, age and skeletal maturity likely play a role in the MPFL injury location, as skeletally immature patients more often have patella-based ruptures.2,18,19 In acute MPFL repair, MRI appears to be the most accurate imaging modality for determining the patella- or femoral-based injuries most amenable to repair and for identifying clinically significant osteochondral lesions, which are not uncommon after first-time patellar dislocation.20,21

Medial Reefing, Imbrication, and Advancement

Medial reefing, imbrication, and advancement, collectively referred to as proximal realignment procedures, describe a variety of techniques that essentially shorten or tighten the medial retinacular structures.22-24 Although the terms cover a variety of similar surgical techniques and are often used interchangeably in the literature, imbrication, or overlapping of adjacent edges, is the single most accurate term used to define this spectrum of procedures. These procedures historically were performed in the setting of chronic or recurrent patellar instability, with the primary goal being to imbricate the attenuated medial retinaculum, which includes the MPFL. However, the procedure has had good clinical outcomes when performed in isolation for patients with normal bony anatomy.25 Such anatomy is rare in chronic or recurrent dislocators, and these proximal soft-tissue procedures are often combined with other osseous realignment procedures, including distal realignment, trochleoplasty, and distal femoral osteotomy.26

Pages

Recommended Reading

Hinged-Knee External Fixator Used to Reduce and Maintain Subacute Tibiofemoral Coronal Subluxation
MDedge Surgery
Potential Operating Room Fire Hazard of Bone Cement
MDedge Surgery
Bariatric surgery or total joint replacement: which first?
MDedge Surgery
Plesiomonas shigelloides Periprosthetic Knee Infection After Consumption of Raw Oysters
MDedge Surgery
Rates of Deep Vein Thrombosis Occurring After Osteotomy About the Knee
MDedge Surgery
Perioperative infliximab does not increase serious infection risk
MDedge Surgery
Antibiotic prophylaxis for artificial joints
MDedge Surgery
Patellofemoral Pain: An Enigma Explained by Homeostasis and Common Sense
MDedge Surgery
A Practical Guide to Understanding and Treating Patellofemoral Pain
MDedge Surgery
Robotic-Assisted Total Knee Arthroplasty
MDedge Surgery