Propensity for Hip Dislocation in Normal Gait Loading Versus Sit-to-Stand Maneuvers in Posterior Wall Acetabular Fractures
Meir Marmor, MD, Erik McDonald, BS, Jenni M. Buckley, PhD, and Amir Matityahu, MD
Treatment of posterior wall (PW) fractures of the acetabulum is guided by the size of the broken wall fragment and by hip instability. Biomechanical testing of hip instability typically is done by simulating the single-leg-stance (SLS) phase of gait, but this does not represent daily activities, such as sit-to-stand (STS) motion.
We conducted a study to examine and compare hip instability after PW fractures in SLS and STS loading. We hypothesized that wall fragment size and distance from the dome (DFD) of the acetabulum to the simulated fracture would correlate with hip instability and, in the presence of a PW fracture, the hip would be more unstable during STS loading than during SLS loading. Incremental PW osteotomies were made in 6 cadaveric acetabula. After each osteotomy, a 1200-N load was applied to the acetabulum to simulate SLS and STS loading until dislocation occurred.
All hip joints in the cadaveric models were more unstable in STS loading than in SLS loading. PW fragments at time of dislocation were larger (P<.001) in SLS loading (85% ± 13%; range, 81%-100%) than in STS loading (40% ± 7%; range, 33%-52%). Mean (SD) DFD at time of dislocation was 15.0 (3.5) mm (range, 14.4-19.6 mm) in STS loading and 5.3 (4.3) mm (range, 0.1-10.0 mm) in SLS loading (P<.04). There was more hip instability in STS loading than in SLS loading. In STS loading, hips dislocated with a PW fracture size of 33% or more and a DFD of 20 mm or less.