Original Research

Improving Visual Estimates of Cervical Spine Range of Motion

Author and Disclosure Information

Cervical spine range of motion (ROM) is a common measure of cervical conditions, surgical outcomes, and functional impairment. Although ROM is routinely assessed by visual estimation in clinical practice, visual estimates have been shown to be unreliable and inaccurate. Reliable goniometers can be used for assessments, but the associated costs and logistics generally limit their clinical acceptance.

To investigate whether training can improve visual estimates of cervical spine ROM, we asked attending surgeons, residents, and medical students at our institution to visually estimate the cervical spine ROM of healthy subjects before and after a training session. This training session included review of normal cervical spine ROM in 3 planes and demonstration of partial and full motion in 3 planes by multiple subjects. Estimates before, immediately after, and 1 month after this training session were compared to assess reliability and accuracy.

Immediately after training, errors decreased by 11.9° (flexion-extension), 3.8° (lateral bending), and 2.9° (axial rotation). These improvements were statistically significant. One month after training, visual estimates remained improved, by 9.5°, 1.6°, and 3.1°, respectively, but were statistically significant only in flexion-extension.

Although the accuracy of visual estimates can be improved, clinicians should be aware of the limitations of visual estimates of cervical spine ROM. Our study results support scrutiny of visual assessment of ROM as a criterion for diagnosing permanent impairment or disability.


 

References

Assessment of cervical spine range of motion (ROM) is an integral aspect of the physical examination for cervical conditions,1-3 surgical outcomes,4 and functional impairment.1 In fact, the emphasis being placed on such functional measures before and after treatments is increasing.4,5

Cervical spine range of motion is routinely used as an outcome measure in clinical studies.6-8 Underscoring the importance of defining cervical spine ROM, studies have found it to be a preoperative predictor of outcomes of anterior cervical surgery,9 and other studies have suggested it is a determinant of athletes’ return to play.10

Spinal ROM measurements can be used to determine the degree of disability experienced by a patient with a spinal condition as defined in the Guides to the Evaluation of Permanent Impairment by the American Medical Association (AMA).1 In the medicolegal realm, ROM measurements made by clinicians can influence the dollar amounts of awards in legal claims, and, according to the AMA guides, the difference in cervical spine ROM between normality and disability or impairment can be as little as 5°.

Although cervical spine ROM is routinely assessed and documented in clinical practice, no universal protocol exists for its evaluation.11,12 In fact, considerable inter-examiner variation in visual estimates of ROM has been found,13-16 and significant inaccuracies have been reported.17,18

Goniometers have been shown to be reliable and highly accurate, with low inter-examiner and intra-examiner variability.5,19-21 Nevertheless, logistics22 and costs21 generally limit their being accepted in routine clinical practice. Among many methods available for assessing ROM, visual estimation is the least reliable or accurate,23 but it is the quickest and least expensive and is recommended in textbooks that describe the spinal-specific physical examination.24 Despite the superiority of goniometers in measuring ROM, these significant barriers have limited their use in clinical practice. When assessing cervical spine ROM, most clinicians prefer visual estimates over goniometers.

We conducted a study to determine whether training could improve the accuracy of visual estimates. We compared the accuracy of visual estimates of cervical spine ROM with that of a radiographically validated electrogoniometer and then investigated whether accuracy and reliability of visual estimates could be improved with a session of instruction and demonstration. Assessments of accuracy were made immediately after and 1 month after this training session.

Materials and Methods

Assessments Made Before Training

This study was approved by our institution’s human investigation committee and was conducted in accordance with the ethical standards of that committee.

Cervical spine ROM was assessed by 8 examiners (2 attending spine surgeons, 4 orthopedic residents, 2 medical students). They were informed they would be participating in a study evaluating visual estimates of motion but were given no other information prior to the study.

Four healthy volunteer subjects (examiners who rotated through the role) were assessed. No subject reported any ongoing neck or spine discomfort or had had any previous spinal surgery. One at a time, subjects were fitted with a cervical harness electrogoniometer capable of measuring angulation of the cervical spine to the nearest degree (modified electrogoniometer, torsiometer, and display from Biometrics, Gwent, UK; Figures 1A, 1B). This electrogoniometer has been shown to have a mean (SD) error of 2.3° (2.6°) relative to radiographic assessments.8

With the electrogoniometer fitted, each subject was instructed to sit upright in a chair with his back to the backrest and his head neutrally positioned. The electrogoniometer was then zeroed, and the subject proceeded with 5 series of flexion-extension, left and right lateral bending, and left and right rotation movements. The subject was instructed to make 1 movement in full motion in each direction and the other 4 movements in less than full motion to yield a variety of excursions for assessment. Each subject was instructed to pause at the apex of each motion. During these pauses, the examiners recorded their visual estimates of movement in each direction while the investigator recorded degrees of motion (displayed by the electrogoniometer) in flexion-extension, lateral bending, and rotation (Figures 2A–2D). The electrogoniometer display was not visible to subjects or examiners.

A total of 840 independent visual estimates of 120 distinct movements were recorded.

Training, and Assessments Made Immediately Thereafter

After the first round of visual estimates, the 8 examiners were verbally instructed in cervical spine ROM assessment and were asked to observe 1 subject, fitted with the electrogoniometer, demonstrating partial and full cervical motions while the investigator announced the electrogoniometric measurements. The motions demonstrated included 15°, 30°, and the extremes of cervical spine ROM in each of 6 directions from neutral.

Pages

Recommended Reading

Physician groups: Fix interoperability before advancing with meaningful use
MDedge Surgery
Studies: Practice consolidation drives up costs
MDedge Surgery
NQF endorses hospital medication reconciliation measure
MDedge Surgery
DeSalvo leaves post to focus on Ebola response
MDedge Surgery
Crisis in Medicine: Have We Traded Technology for Our Six Senses?
MDedge Surgery
Application of Epoxy Resin to a Solid-Foam Pelvic Model: Creating a Dry-Erase Pelvis
MDedge Surgery
To Outsource or Not to Outsource Your Physical Therapy Service Line Management?
MDedge Surgery
Universal Hepatitis C Screening and Surgeon Safety
MDedge Surgery
Pilot Study for an Orthopedic Surgical Training Laboratory for Basic Motor Skills
MDedge Surgery
Does a Prior Hip Arthroscopy Affect Clinical Outcomes in Metal-on-Metal Hip Resurfacing Arthroplasty?
MDedge Surgery