News

Skin injury after FEVAR less prevalent than expected

View on the News

Do not become complacent

The dramatic paradigm shift in vascular surgery in the last decade and a half, resulting in the increased and widespread application of catheter-based fluoroscopic interventions makes the topic of radiation injury timely for all of us. This report is a follow up of a study by the same group published in the Journal of Vascular Surgery in 2013 (58:715-21) in which they demonstrated that the use of a variety of radiation safety measures including increasing table height, utilizing collimation and angulation, decreasing magnification modes, and maintaining minimal patient-to-detector distance resulted in a 60% reduction in skin dose to their patients when measured as an index of peak skin dose to reference air kerma (PSD/RAK). Unfortunately, skin exposure remained high for FEVAR despite these measures, underscoring the fact that for very complex interventions, even with excellent radiation safety practices, the risk of skin injury remains a reality.

The fact that skin doses as high as 11 Gy did not result in any deterministic injuries is both reassuring and a little surprising. According to the Centers for Disease Control and Prevention, radiation doses of greater than 2 Gy but less than 15 Gy will usually result in erythema within 1-2 days, with a second period of erythema and edema at 2-5 weeks, occasionally resulting in desquamation at 6-7 weeks. Late changes can include mild skin atrophy and some hyperpigmentation. Although complete healing can usually be expected at these doses, squamous skin cancer can still occur, often more than a decade after exposure.

So why were no injuries seen? It may be that some were missed since follow-up examinations were not performed in 100% of their patients at any time interval, and it’s not stated whether exams were routinely performed in the first 1-2 days, when I would presume most patients were still hospitalized and the first stage of skin erythema is usually seen. Alternatively, it may be that the surrogate measure of either RAK or the index of PSD/RAK overestimated the true radiation skin dose, which seems highly likely, especially if the time of exposure in any one location was based less on the frequent changes in gantry angle and table position so commonly used in these procedures.

In our hospital, the Massachusetts Department of Public Health regulations require the patient and their physician be notified by letter when the estimated total absorbed radiation dose equals or exceeds 2 Gy. This is based on calculations by our physicist who reviews the details of any case in which the RAK measured equals or exceeds 2 Gy. Like the experiences of the authors, this most commonly occurs with lengthy and complex interventions. In our experience, we have never observed a significant skin injury presumably for the same reason – the exposure in any one location tends to be far less than the total calculated skin dose. Nevertheless, this study should not lull surgeons into a sense of complacency regarding the risk to the patient (and themselves and their staff). As our comfort and expertise with complex interventions increases, it is likely that radiation exposure will continue to increase, placing our patients at increased risk. Understanding the risk of radiation skin injury and how to minimize it is critical for any surgeon performing FEVAR and any other complex intervention utilizing fluoroscopic imaging.

Dr. Frank Pomposelli is an associate professor of surgery at Harvard Medical School; clinical chief, division of vascular surgery at the Beth Israel Deaconess Medical Center; and section chief, division of vascular surgery, New England Baptist Hospital, Boston. He is also an associate medical editor for Vascular Specialist.


 

AT THE WESTERN VASCULAR SOCIETY ANNUAL MEETING

References

In the previous study, conducted prior to the new follow-up policy, the dose index for FEVARs was 0.78, “meaning that the peak skin dose that the patient received could be roughly estimated as 78% of the RAK dose displayed on the monitor,” Dr. Kirkwood explained. “In the current work, the dose index decreased to 60%. This suggests that surgeons in our group have now more appropriately and effectively employed strategies to decrease radiation dose to the patient. However, even when the best operating practice is employed, FEVARs still continue to require high radiation doses in order to complete. “

The present study demonstrated that deterministic skin injuries “are uncommon after FEVAR, even at high RAK levels and regardless of cumulative dose,” she concluded. “Even with more comprehensive patient follow-up, the fact that no skin injuries were reported suggests that skin injuries in this patient cohort are less prevalent than the published guidelines would predict.”

Dr. Kirkwood reported having no financial disclosures.

dbrunk@frontlinemedcom.com

On Twitter @dougbrunk

Pages

Recommended Reading

Bioabsorbable-polymer coronary stent achieves noninferiority endpoint
MDedge Cardiology
Mechanical mitral valves outshine bioprostheses in long term
MDedge Cardiology
TAVR survival improved during 2009-2012
MDedge Cardiology
CABG plus mitral repair put under spotlight
MDedge Cardiology
ICD lead extraction complication rates warrant surgical backup
MDedge Cardiology
Open TAA repair surpasses TEVAR survival
MDedge Cardiology
VTE risk models target a formidable surgery foe
MDedge Cardiology
Elevated troponin present in 40% with T2D and stable heart disease
MDedge Cardiology
Bare-metal stent superior safety debunked in DAPT analysis
MDedge Cardiology
3D echocardography underpins percutaneous mitral valve repair
MDedge Cardiology