Clinical Review

Update on the Pathophysiology of Psoriasis

Author and Disclosure Information

Psoriasis is a genetically programmed pathologic interaction among skin cells, immunocytes, and numerous biologic signaling molecules that is triggered by environmental stimuli. The immune response is a cellular one; type 1 (TH1) and type 17 (TH17) T cells are activated by IL-12 and IL-23 secreted by antigen-presenting cells (APCs) in the skin. Through various cytokines, such as tumor necrosis factor (TNF) α, these cells cause a chronic inflammatory state and alter epidermal hyperproliferation, differentiation, apoptosis, and neoangiogenesis that produce the cutaneous findings seen in this disease. The newer biologic therapies target the immunologic signaling pathways and cytokines identified in the pathogenesis of psoriasis and provide notable clinical improvement. Further study in the pathogenesis of psoriasis can help identify targets for future therapies.

Practice Points

  • Psoriasis is a systemic inflammatory disease.
  • We now have an increased understanding of the specific cytokines involved in the disease.
  • Therapies have been developed to target these cytokines.


 

References

Increased understanding of the pathophysiology of psoriasis has been one of the driving forces in the development of new therapies. An understanding of the processes involved is important in the optimal management of the disease. The last 30 years of research and clinical practice have revolutionized our understanding of the pathogenesis of psoriasis as the dysregulation of immunity triggered by environmental and genetic stimuli. Psoriasis was originally regarded as a primary disorder of epidermal hyperproliferation. However, experimental models and clinical results from immunomodulating therapies have refined this perspective in conceptualizing psoriasis as a genetically programmed pathologic interaction among resident skin cells; infiltrating immunocytes; and a host of proinflammatory cytokines, chemokines, and growth factors produced by these immunocytes. Two populations of immunocytes and their respective signaling molecules collaborate in the pathogenesis: (1) innate immunocytes, mediated by antigen-presenting cells (APCs)(including natural killer [NK] T lymphocytes, Langerhans cells, and neutrophils), and (2) acquired or adaptive immunocytes, mediated by mature CD4+ and CD8+ T lymphocytes in the skin. Such dysregulation of immunity and subsequent inflammation is responsible for the development and perpetuation of the clinical plaques and histological inflammatory infiltrate characteristic of psoriasis.

Although psoriasis is considered to be an immune-mediated disease in which intralesional T lymphocytes and their proinflammatory signals trigger primed basal layer keratinocytes to rapidly proliferate, debate and research focus on the stimulus that incites this inflammatory process. Our current understanding considers psoriasis to be triggered by exogenous or endogenous environmental stimuli in genetically susceptible individuals. Such stimuli include group A streptococcal pharyngitis, viremia, allergic drug reactions, antimalarial drugs, lithium, beta-blockers, IFN-α, withdrawal of systemic corticosteroids, local trauma (Köbner phenomenon), and emotional stress. These stimuli correlate with the onset or flares of psoriatic lesions. Psoriasis genetics centers on susceptibility loci and corresponding candidate genes, particularly the psoriasis susceptibility (PSORS) 1 locus on the major histocompatibility complex (MHC) class I region. Current research on the pathogenesis of psoriasis examines the complex interactions among immunologic mechanisms, environmental stimuli, and genetic susceptibility. After discussing the clinical presentation and histopathologic features of psoriasis, we will review the pathophysiology of psoriasis through noteworthy developments, including serendipitous observations, reactions to therapies, clinical trials, and animal model systems that have shaped our view of the disease process. In addition to the classic skin lesions, approximately 23% of psoriasis patients develop psoriatic arthritis, with a 10-year latency after diagnosis of psoriasis.1

Principles of Immunity

The immune system, intended to protect its host from foreign invaders and unregulated cell growth, employs 2 main effector pathways—the innate and the acquired (or adaptive) immune responses—both of which contribute to the pathophysiology of psoriasis.2 Innate immunity responses occur within minutes to hours of antigen exposure but fail to develop memory for when the antigen is encountered again. However, adaptive immunity responses take days to weeks to respond after challenged with an antigen. The adaptive immune cells have the capacity to respond to a greater range of antigens and develop immunologic memory via rearrangement of antigen receptors on B and T cells. These specialized B and T cells can then be promptly mobilized and differentiated into mature effector cells that protect the host from a foreign pathogen.

Innate and adaptive immune responses are highly intertwined; they can initiate, perpetuate, and terminate the immune mechanisms responsible for inflammation. They can modify the nature of the immune response by altering the relative proportions of type 1 (TH1), type 2 (TH2), and the more recently discovered type 17 (TH17) subset of helper T cells and their respective signaling molecules. A TH1 response is essential for a cellular immunologic reaction to intracellular bacteria and viruses or cellular immunity. A TH2 response promotes IgE synthesis, eosinophilia, and mast cell maturation for extracellular parasites and helminthes as well as humoral immunity, while a TH17 response is important for cell-mediated immunity to extracellular bacteria and plays a role in autoimmunity.3 The innate and adaptive immune responses employ common effector molecules such as chemokines and cytokines, which are essential in mediating an immune response.

Pages

Recommended Reading

Pregnancy registries are a valuable resource for dermatologists
MDedge Dermatology
No evidence of subclinical axial involvement seen in skin psoriasis
MDedge Dermatology
Mobile App Rankings in Dermatology
MDedge Dermatology
Adalimumab safety profile similar in children and adults
MDedge Dermatology
Anti-TNF agents preferred for severe psoriasis in pregnancy
MDedge Dermatology
Adalimumab safety update finds no new signals
MDedge Dermatology
IL inhibitor options move psoriasis treatment forward
MDedge Dermatology
Most dermatologic drugs safe for breastfeeding mothers
MDedge Dermatology
Flu vaccination lags among patients with psoriasis
MDedge Dermatology
Food for Thought
MDedge Dermatology