From the Journals

Suicide risk prediction tools fail people of color


 

Current models used to predict suicide risk fall short for racialized populations including Black, Indigenous, and people of color (BIPOC), new research shows.

Investigators developed two suicide prediction models to examine whether these types of tools are accurate in their predictive abilities, or whether they are flawed.

They found both prediction models failed to identify high-risk BIPOC individuals. In the first model, nearly half of outpatient visits followed by suicide were identified in White patients versus only 7% of visits followed by suicide in BIPOC patients. The second model had a sensitivity of 41% for White patients, but just 3% for Black patients and 7% for American Indian/Alaskan Native patients.

Dr. Yates Coley

“You don’t know whether a prediction model will be useful or harmful until it’s evaluated. The take-home message of our study is this: You have to look,” lead author Yates Coley, PhD, assistant investigator, Kaiser Permanente Washington Health Research Institute, Seattle, said in an interview.

The study was published online April 28, 2021, in JAMA Psychiatry.

Racial inequities

Suicide risk prediction models have been “developed and validated in several settings” and are now in regular use at the Veterans Health Administration, HealthPartners, and Kaiser Permanente, the authors wrote.

But the performance of suicide risk prediction models, while accurate in the overall population, “remains unexamined” in particular subpopulations, they noted.

“Health records data reflect existing racial and ethnic inequities in health care access, quality, and outcomes; and prediction models using health records data may perpetuate these disparities by presuming that past healthcare patterns accurately reflect actual needs,” Dr. Coley said.

Dr. Coley and associates “wanted to make sure that any suicide prediction model we implemented in clinical care reduced health disparities rather than exacerbated them.”

To investigate, researchers examined all outpatient mental health visits to seven large integrated health care systems by patients 13 years and older (n = 13,980,570 visits by 1,422,534 patients; 64% female, mean age, 42 years). The study spanned from Jan. 1, 2009, to Sept. 30, 2017, with follow-up through Dec. 31, 2017.

In particular, researchers looked at suicides that took place within 90 days following the outpatient visit.

Researchers used two prediction models: logistic regression with LASSO (Least Absolute Shrinkage and Selection Operator) variable selection and random forest technique, a “tree-based method that explores interactions between predictors (including those with race and ethnicity) in estimating probability of an outcome.”

The models considered prespecified interactions between predictors, including prior diagnoses, suicide attempts, and PHQ-9 [Patient Health Questionnaire–9] responses, and race and ethnicity data.

Researchers evaluated performance of the prediction models in the overall validation set and within subgroups defined by race/ethnicity.

The area under the curve measured model discrimination, and sensitivity was estimated for global and race/ethnicity-specific thresholds.

‘Unacceptable’ scenario

Within the total population, there were 768 deaths by suicide within 90 days of 3,143 visits. Suicide rates were highest for visits by patients with no recorded race/ethnicity, followed by visits by Asian, White, American Indian/Alaskan Native, Hispanic, and Black patients.

Both models showed “high” AUC sensitivity for White, Hispanic, and Asian patients but “poor” AUC sensitivity for BIPOC and patients without recorded race/ethnicity, the authors reported.

“Implementation of prediction models has to be considered in the broader context of unmet health care needs,” said Dr. Coley.

“In our specific example of suicide prediction, BIPOC populations already face substantial barriers in accessing quality mental health care and, as a result, have poorer outcomes, and using either of the suicide prediction models examined in our study will provide less benefit to already-underserved populations and widen existing care gaps,” a scenario Dr. Coley said is “unacceptable.”

We must insist that new technologies and methods be used to reduce racial and ethnic inequities in care, not exacerbate them,” she added.

Pages

Recommended Reading

Adult separation anxiety raises suicidality risk
MDedge Family Medicine
Shedding the super doctor myth
MDedge Family Medicine
Psilocybin matches SSRI for moderate to severe depression in phase 2 study
MDedge Family Medicine
Nurses or physicians: Who are at highest suicide risk?
MDedge Family Medicine
Suicide in the early months of the pandemic: Unexpected trends
MDedge Family Medicine
COVID lockdowns linked to PTSD in patients with eating disorders
MDedge Family Medicine
The cloudy role of cannabis as a neuropsychiatric treatment
MDedge Family Medicine
National poll shows ‘concerning’ impact of COVID on Americans’ mental health
MDedge Family Medicine
To fight anti-Asian hate, we must talk about it
MDedge Family Medicine
Reflections on healing as a process
MDedge Family Medicine