Applied Evidence

Step-by-step evaluation and treatment of shoulder dislocation

Author and Disclosure Information

 

References

Roadmap for treatment

The rate of recurrence after a first anterior shoulder dislocation is strongly associated with a person’s age and level of activity. Active patients younger than 20 years have a 92% to 96% recurrence rate14; patients 20 to 40 years, 25% to 48%; and patients older than 40 years, < 10%.15

Young, athletic patients who are treated nonoperatively are left at an unacceptably high risk of recurrence, leading to progressive damage to bony and soft-tissue structures.16,17 Surgical labral repair after a first-time anterior dislocation produced improved outcomes in terms of recurrent dislocation (7.9%), compared to outcomes after nonsurgical treatment (52.9%),14 and has been associated with a lower incidence of future glenohumeral osteoarthritis.18 For those reasons, we recommend referral to an orthopedic surgeon for all patients younger than 20 years who sustain an anterior shoulder dislocation.

Patients older than 20 years who do not have concomitant shoulder injury, and who demonstrate full strength in abduction, external rotation, and internal rotation of the shoulder on clinical examination, have a low probability of associated rotator-cuff tear. They can be immobilized in a sling for 1 to 3 weeks, followed by a 6 to 12–week regimen of physical therapy.

Concomitant tear of the rotator cuff. Weakness on examination requires MRI or a magnetic resonance arthrogram for evaluation of associated rotator-cuff tear. A tear identified on MRI should be referred to an orthopedic surgeon because timely repair can be crucial to attaining best outcomes. Conservative treatment of traumatic full-­tendon rotator-cuff tear is associated with poor results, progression in the size of the tear, and advancement of muscle atrophy.19,20 For patients younger than 40 years, arthroscopic rotator-cuff repair, with or without labral repair, produces excellent clinical outcomes, carries a low risk of complications, and results in a > 95% rate of return to a preoperative level of recreational and job activities.21

Patients who demonstrate weakness of the rotator-cuff muscles on examination, but who do not have a tear noted on MRI, should be evaluated by electromyography and nerve-conduction testing to assess nerve injury as an alternative cause of weakness.10,11 If a neurologic deficit is found on nerve-conduction testing, the patient should be referred for neurologic evaluation.10

Continue to: Patients with negative findings...

Pages

Recommended Reading

Quinolones and tendon health: Third-generation drugs may be safer
MDedge Family Medicine
Fall prevention advice for patients with Parkinson’s
MDedge Family Medicine
Foot rash and joint pain
MDedge Family Medicine
Osteoporosis management: Use a goal-oriented, individualized approach
MDedge Family Medicine
5-year-old boy • calf pain • fever • cough & rhinitis • Dx?
MDedge Family Medicine
AAP updates guidance for return to sports and physical activities
MDedge Family Medicine
Managing work disability to help patients return to the job
MDedge Family Medicine
Three JAK inhibitors get boxed warnings, modified indications
MDedge Family Medicine
Could the osteoporosis drug alendronate ward off diabetes?
MDedge Family Medicine
Oral PTH shows promise for osteoporosis in early phase 2 study
MDedge Family Medicine