Clinical Review

The Evolution of Image-Free Robotic Assistance in Unicompartmental Knee Arthroplasty

Author and Disclosure Information

 

References

Conclusion

Robotics has come a long way from its humble conceptual beginnings nearly a century ago. Rapid advances in medical technology over the past 10 years have led to the development and growing popularity of RAS in orthopedic surgery, particularly during UKA. Component placement, quantified soft tissue balance, and radiographic alignment appear to be improved and the incidence of outliers reduced with the use of RAS during UKA. Further assessment is needed to determine whether the improved alignment and balance will impact clinical function and/or durability. Early results are very promising, though, creating optimism that the full benefits of RAS in UKA will be further confirmed with additional time and research.

Pages

Recommended Reading

Neonatal Physeal Separation of Distal Humerus During Cesarean Section
MDedge Surgery
Ischiofemoral Impingement and the Utility of Full-Range-of-Motion Magnetic Resonance Imaging in Its Detection
MDedge Surgery
Office-Based Rapid Prototyping in Orthopedic Surgery: A Novel Planning Technique and Review of the Literature
MDedge Surgery
Cutaneous Burn Caused by Radiofrequency Ablation Probe During Shoulder Arthroscopy
MDedge Surgery
Intraoperative Radiofrequency Ablation for Osteoid Osteoma
MDedge Surgery
Nanotechnology: Why Should We Care?
MDedge Surgery
Leg-Length Discrepancy After Total Hip Arthroplasty: Comparison of Robot-Assisted Posterior, Fluoroscopy-Guided Anterior, and Conventional Posterior Approaches
MDedge Surgery
Robotic-Assisted Knee Arthroplasty: An Overview
MDedge Surgery
Transitions (The Future of Orthopedics)
MDedge Surgery
Disposable Navigation for Total Knee Arthroplasty
MDedge Surgery