Authors’ Disclosure Statement: Dr. De Martino reports that he is a consultant to Lima Corporate. Dr. Dines and Dr. Craig report that they receive royalties from Zimmer Biomet for the development of the product (Comprehensive Shoulder VRS) discussed in this article. Dr. Gulotta reports that he is a consultant to Zimmer Biomet. Dr. Warren reports no actual or potential conflict of interest in relation to this article.
Dr. De Martino is a Clinical Fellow, Sports Medicine and Shoulder Service Division, Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York. Dr. Dines is an Attending Orthopaedic Surgeon, Hospital for Special Surgery, Sports Medicine and Shoulder Service Division, Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York, Professor, Weill Cornell Medical College, as well as Chairman and Professor of Orthopedic Surgery, Albert Einstein College of Medicine at LIJ, Bronx, New York. Dr. Warren is Professor of Orthopedic Surgery, Weill Cornell Medical College, and Attending Orthopedic Surgeon, Hospital for Special Surgery, Sports Medicine and Shoulder Service Division, Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York. Dr. Craig is Chief Executive Officer, TRIA Orthopaedic Center Professor of Orthopaedic Surgery, University of Minnesota TRIA Orthopaedic Center, Bloomington, Minnesota. Dr. Gulotta is an Assistant Attending Orthopaedic Surgeon, Hospital for Special Surgery, and Assistant Professor of Orthopaedic Surgery, Weill Cornell Medical College, Sports Medicine and Shoulder Service Division, Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, New York.
Address correspondence to: Lawrence V. Gulotta, MD, Sports Medicine and Shoulder Service, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 (tel, 646-797-8735; fax, 646-797-8726; email, gulottal@hss.edu).
Ivan De Martino, MD David M. Dines, MD Russell F. Warren, MD Edward V. Craig, MD, MPH Lawrence V. Gulotta, MD . Patient-Specific Implants in Severe Glenoid Bone Loss. Am J Orthop. February 8, 2018
References
In October 2013, a 68-year-old man underwent a TSA for end-stage osteoarthritis. After 18 months, the implant failed due to active Propionibacterium acnes infection, which required excisional arthroplasty with insertion of an antibiotic spacer. Significant glenoid bone loss (Figure 5) and global soft-tissue deficiency caused substantial disability and led to an indication for a reverse TSA with a patient-specific glenoid vault reconstruction (Figures 6A-6D) after infection eradication. Within 20 months after this surgery, the patient had resumed a satisfactory range of motion (130º forward elevation, 20º external rotation) and outcome.
DISCUSSION
Although glenoid bone loss is often seen in the primary setting (degenerative, congenital, and post-traumatic), severe glenoid bone loss is encountered in most revision TSAs. The best treatment method for massive glenoid bone defects during complex shoulder arthroplasty remains uncertain. Options have included eccentric reaming, glenoid reconstruction with bone allograft and autograft, and more recently augmented components and patient-specific implants.21-25 The advent and availability of CAD/CAM technology have enabled shoulder surgeons to create patient-specific metal solutions to these challenging cases. Currently, only a few reports exist in the literature on patient-specific glenoid components in the setting of severe bone loss.29-32
Chammaa and colleagues29 reported the outcomes of 37 patients with a hip-inspired glenoid component (Total Shoulder Replacement, Stanmore Implants Worldwide). The 5-year results with this implant were promising, with a 16% revision rate and only 1 case of glenoid loosening.
Stoffelen and colleagues30 recently described the successful use of a patient-specific anatomic metal-backed glenoid component for the management of severe glenoid bone loss with excellent results at 2.5 years of follow-up. A different approach was pursued by Gunther and Lynch,31 who reported on 7 patients with a custom inset glenoid implant for deficient glenoid vaults. These circular anatomic, custom-made glenoid components were created with the intention of placing the implants partially inside the glenoid vault and relying partially on sclerotic cortical bone. Despite excellent results at 3 years of follow-up, their use is limited to specific defect geometries and cannot be used in cases of extreme bone loss.
CONCLUSION
We have described the use of a patient-specific glenoid component in 2 patients with severe glenoid bone loss. Despite the satisfactory clinical and short-term radiographic results, we acknowledge that longer-term follow-up is needed to confirm the efficacy of this type of reconstruction. We believe that patient-specific glenoid components represent a valuable addition to the armamentarium of shoulder surgeons who address complex glenoid bone deformities.