Clinical Inquiries

What is the best portable method of purifying water to prevent infectious disease?

Author and Disclosure Information

 

References

EVIDENCE-BASED ANSWER

There isn’t a single best method, but there are 5 that adequately purify water according to environmental Protection agency (EPA) standards. These include 1) boiling for 1 minute if below 2000 m (6562 feet) and 3 minutes if above, 2) chlorine dioxide tablets, 3) MIoX purifier, 4) ultraviolet light (steriPEN), and 5) portable filtration with a absolute pore size <1 micrometer combined with halogenation or charcoal filtration (strength of recommendation [SOR]: C, based on expert opinion and microbiological testing). Halogenation alone (ie, chlorine and iodine) is not effective against Cryptosporidium (SOR: C, based on microbiological testing).

Clinical commentary

Why boil water when there are so many other options?
Timothy Mott, MD, FAAFP
US Naval Hospital, Sigonella, Italy

These days, “boil it, peel it, or forget it” only goes so far with the unencumbered traveler. Experience tells me that most hear “Boil it” and instantly go right to “Forget it!” Fortunately, there is an excellent resource to assist patients in choosing a personally acceptable portable water purification system. It’s called the Water Purification Database at usachppm.apgea.army.mil/WPD/CompareDevices.aspx.1

This outstanding database was developed by an impartial third-party for the US Army and gives clear, well-organized guidance on over 60 purifiers. For each purifier, the guide covers efficacy against primary pathogens, purification mechanism, links to manufacturers, and an advantages/ disadvantages breakdown (such as weight, cost, and ease of use). Add this site to your Internet “favorites” folder.

Evidence summary

With the rise in international travel and adventure sports, individuals are at increased risk of acquiring infections by drinking water from impure water sources. Common waterborne infections that back-country and international travelers may contract include bacterial diarrhea, viruses, protozoa (such as Giardia and Cryptosporidium), and parasites (such as schistosoma). The risk of infection varies based on travel location.

To prevent illness, travelers may seek medical guidance regarding safe water practice. In one study, 36% of travelers sought advice from a physician prior to international travel.2 Preventing waterborne infections should be a component of traveler education, in addition to other standard advice, such as mosquito avoidance and immunizations.3 (For more on travel safety, see these Clinical Inquiries: “When should travelers begin malaria prophylaxis?” in the November 2007 Journal of Family Practice, pages 950–952, and “What is the most effective and safe malaria prophylaxis during pregnancy?” on page 51 of this issue.)

Which devices meet EPA standards?

The EPA has established a “minimal microbiological hazard” allowed for a portable water purification system to be considered safe. Water purifiers must reduce bacteria by 99.9999%, viruses by 99.99%, and protozoa (such as Cryptosporidium parvum) by 99.9% to receive an EPA certification number.4

There are no head-to-head trials comparing the effectiveness of different methods of purification to prevent infectious disease. The majority of the evidence is based on data provided by manufacturers to the EPA, with some independent studies and expert opinion (TABLE).

Expert opinion recommends bringing water to a rapid boil for at least 3 minutes and letting it cool as an effective means of water purification.5 Chlorine dioxide tablets, the MIOX purifier, and UV light (SteriPEN) have all met EPA standards for lower pathogen counts under ideal conditions. Halogenation does not reduce Cryptosporidium below the microbiological hazard of 99.9%, but it is generally accepted to effectively treat viruses, bacteria, and other protozoa after filtering through a cloth to remove large particles.6

Filtration with an absolute pore size of <0.1 micrometer (10 times smaller than the EPA standard) has been generally accepted as effective against protozoa and bacteria, but it is not effective against viruses because of their small size.7 When combined with either halogenation or charcoal filters, filtration can be effective against all pathogens.8

TABLE
Portable water purification: How do these 6 methods compare?

METHODEFFECTIVENESSADVANTAGESDISADVANTAGES
Boiling with cooling*Kills viruses, bacteria, protozoa, and parasitessimple, universally accepted, no special equipment requiredTime-consuming, may require large amounts of fuel
chlorine dioxide*
Kills bacteria, viruses, protozoa, and parasitessame as chlorine/iodine treatment but also treats Cryptosporidium, good palatabilityMust wait up to 4 hours to treat Cryptosporidium, costs more than iodine/chlorine ($13 for 30 tabs)
Chlorine/iodine
Kills bacteria, viruses, protozoa (not Cryptosporidium), and parasitesInexpensive, easy, lightweight, treats large quantitiesDoes not kill Cryptosporidium, poor taste, must wait for water to be treated; contraindicated in pregnancy, thyroid disease; not recommended beyond few weeks of use
Filtration †
Removes parasites, Giardia, Cryptosporidium, and bacteriaAble to use water immediately, removes sediment, many have combination of activated carbon, chemical disinfectant, or bothCan potentially be expensive, filters may clog easily, heavy, not effective against small particle viruses, therefore should supplement with chlorine or iodine
MIOX Purifier*
Kills bacteria, viruses, protozoa, and parasiteslight (8 oz), sturdy, treats large quantities; requires camera batteries and saltCost $130, must wait for 4 hours and treat with higher strength to treat Cryptosporidium; requires 30 minutes to treat viruses, bacteria, and Giardia


UV light (steriPEN) ‡
Kills bacteria, viruses, protozoa, parasites in clear waterLight (8 oz), quick (treats 16 oz of water in 1 minute)Cost $100, does not work in turbid conditions
* Meets EPA standards.
† some filtration systems meet EPA standards. See chppm-www.apgea.army.mil/WPD/CompareDevices.aspx for testing results of individual filters.1
‡ Meets EPA standards in clear water.

Pages

Evidence-based answers from the Family Physicians Inquiries Network

Recommended Reading

Cancer Patients Miss Shots in PCP-Specialist Gap
MDedge Family Medicine
Flu Vaccine Effective Despite Anti-TNF Therapy
MDedge Family Medicine
Flu Shot Rates Are Low Among High-Risk Teens
MDedge Family Medicine
ACIP Clarifies Its Suggestions for PCV7 Catch-Up
MDedge Family Medicine
STD Rates Continue to Increase in Select Groups
MDedge Family Medicine
Two- and Three-Dose PCV7 Schedules Aren't Equivalent
MDedge Family Medicine
Most Yogurt Probiotics No Match for Infection
MDedge Family Medicine
Textbook Pattern Is Not at All Common in Secondary Syphilis
MDedge Family Medicine
Cases of Rocky Mountain SpottedFever Increase Almost Threefold
MDedge Family Medicine
Azithromycin for PID beats doxycycline on all counts
MDedge Family Medicine